МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой общей и неорганической химии

В <u>Семенов В.Н.</u>

28.04.2022

Б1.О.13 Химия

- **1.** Шифр и наименование направления подготовки/специальности: 06.03.02 Почвоведение
- 2. Профиль подготовки/специализации: Управление земельными ресурсами
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма образования: Очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** Кафедра общей и неорганической химии
- 6. Составители программы Семенова Галина Владимировна, д.х.н., профессор
- **7. Рекомендована:** : НМС медико-биологического факультета протокол № 2 от 21.03.2022

8. Учебный год: 2022/23 Семестр(ы): 1

9. Цели и задачи учебной дисциплины:

Цель дисциплины:

Основной целью курса химии является изложение общетеоретического фундамента химической науки в целом. Рассматриваются общетеоретические концепции, законы, теории, такие как периодический закон, атомно-молекулярное учение, теория химического строения, строение атома и химическая связь, химическая кинетика и термодинамика. Изучение разделов химии преследует цель развить у сту-

дентов химическое мышление, научить теоретическому подходу к научным проблемам.

Задачи дисциплины:

- заложить основы профессиональной подготовки по химии,
- осуществить переход от качественного описательного подхода изучения предмета к количественным представлениям в химии;
 - рассмотреть основные законы и представления химии;
- освоить теорию и научиться применять на практике учение о веществе и химических процессах;
- изучить основные свойства химических элементов и важнейших неорганических соединений.
- **10. Место учебной дисциплины в структуре ООП**: Учебная дисциплина "Химия" относится к обязательной части Блока 1 «Дисциплины (модули)» Федерального государственного образовательного стандарта высшего образования по специальности 06.03.02 Почвоведение (бакалавриат).

Дисциплина изучается в 1 семестре 1 курса, предшествующих дисциплин не имеет и базируется на знаниях по химии в объеме федерального компонента государственного стандарта основного общего образования.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компе-	Код(ы	Индикатор(ы)	Планируемые результаты обучения
	тенции)		
ОПК- 1	Способен для решения профессиональных задач использовать основные закономерности в области математики, физики, химии, наук о Земле, биологии и экологии,	0ΠK- 1.2	Демонстрирует навыки лабораторной работы и методы химии, физики для решения профессиональных задач	Знать: роль химии в естествознании, ее связь с другими естественными науками (биологией) и медициной, значение в жизни современного общества; важнейшие химические понятия и основные учения: о строении атомов и молекул; периодическом изменении свойств элементов; химическом процессе (химической термодинамике и химической кинетике) Уметь: использовать знания теоретических основ химии для объяснения свойств веществ и реакций, в которых они участвуют; применять знания в области химии для освоения профессиональных дисциплин и решения профессиональных задач; Владеть: методами безопасного обращения с химическими веществами с учетом их физических и химических свойств

12. Объем дисциплины в зачетных единицах/час – 2 з.е. / 72 ч.

Форма промежуточной аттестации зачет

13. Трудоемкость по видам учебной работы

Вид учебной работы	Трудоемкость			
	Всего По семестрам			
		№ семестра	№ семестра	

Аудиторные занятия		50	1	
	лекции	16	1	
в том числе:	практические			
	лабораторные	34	1	
Самостоятельная	Самостоятельная работа		1	
в том числе: курсовая работа (проект)		-		
Форма промежуточной аттестации		-		
(экзамен –час.)				
	Итого:		1	

13.1. Содержание дисциплины

п/п			Реализация
	Наименование раздела дисциплины	Содержание раздела дисциплины	раздела дис- циплины с помощью он- лайн-курса, ЭУМК *
		1. Лекции	
1.1	Введение. Основные понятия и законы химии Современная химическая атомистика	Предмет и задачи химии. Место химии в ряду естественных наук. Химия и охрана окружающей среды. Фундаментальные законы химии. Молекулярная и немолекулярная форма кристаллов. Стехиометрические законы химии. Газовые законы. Постоянная Авогадро. Моль. Молярная масса.	ЭУМК "Химия" https://edu.vsu.r u/course/view.p hp?id=19534
1.2	Химическая кинетика	Скорость и механизм химической реакции. Скорость и концентрация реагирующих веществ. Закон действующих масс. Порядок реакции и механизм процесса.	ЭУМК "Химия" https://edu.vsu.r u/course/view.p hp?id=19534
1.3	Химическая термоди- намика и химическое равновесие	Основы термохимии. Экзо- и эндотермические реакции. Закон Лавуазье-Лапласа. Закон Гесса. Термодинамические системы: изолированные, закрытые, открытые. Критерий направленности химического процесса. Свободная энергия Гиббса, ее уменьшение при самопроизвольных процессах. Обратимые и необратимые процессы. Константа равновесия. Принцип Ле-Шателье.	ЭУМК "Химия" https://edu.vsu.r u/course/view.p hp?id=19534
1.4	Растворы	Растворы твердые, жидкие и газообразные. Способы выражения концентрации растворов. Понятие об идеальном, разбавленном и реальном растворе. Теория электролитической диссоциации. Коллигативные свойства идеальных растворов. Давление пара. Закон Рауля. Криоскопия и эбуллиоскопия. Осмос. Осмотическое давление. Закон Вант-Гоффа. Электролиты и неэлектролиты. Степень и константа диссоциации. Ионное произведение воды. Водородный показатель. Кислотносновные индикаторы. Современные представления о природе кислот и оснований. Реакции нейтрализации и гидролиза. Степень и константа гидролиза. Произведение растворимости.	ЭУМК "Химия" https://edu.vsu.r u/course/view.p hp?id=19534
1.5	Окислительно- восстановительные ре- акции. Электролиз	Окислительно-восстановительные реакции. Направленность процессов, связанных с передачей электронов. Электрохимический ряд напряжений. Стандартные электродные потен-	ЭУМК "Химия"

		циалы. Методы уравнивания окислительно-	
		восстановительных реакции: электронного ба-	
		ланса, метод полуреакций.	
1.6	Строение атома. Пе-	Волновая природа электрона. Квантовые чис-	ЭУМК "Химия"
	риодический закон	ла. Многоэлектронные атомы и периодическая	https://edu.vsu.r
		система Д.И. Менделеева. Принципы и прави-	u/course/view.p
		ла заполнения электронами атомных орбита-	hp?id=19534
		лей. Принцип Паули, правило Гунда. Совре-	
		менная трактовка периодического закона	
1.7	Теория химической свя-	Основные характеристики химической связи.	<i>ЭУМК</i> "Химия"
	зи	Ковалентная связь. Метод валентных связей.	https://edu.vsu.r
	3/1	Свойства ковалентной связи. Механизмы об-	u/course/view.p
			hp?id=19534
		разования ковалентной связи. Метод молеку-	
		лярных орбиталей. Энергетические диаграм-	
		мы простейших гомоядерных молекул. Ион-	
		ная связь и ее свойства. Металлическая связь.	
		Свойства металлической связи. Водородная	
		связь. Природа ее образования. Силы Ван -	
		дер- Ваальса.	
1.8	Комплексные соедине-	Комплексные соединения. Координационная	Э <i>УМК</i> "Химия"
	ния	теория Вернера. Устойчивость комплексных	https://edu.vsu.r
		соединений. Природа химической связи в	u/course/view.p
		комплексных соединениях. Метод валентных	hp?id=19534
		связей. Теория кристаллического поля. Поня-	
		тие о теории поля лигандов. (метод молеку-	
		лярных орбиталей).	
2.1		бораторные занятия	
3.1	Химическая кинетика	Скорость химической реакции. Зависимость	
		скорости от концентрации, температуры и	
		площади соприкосновения реагирующих ве-	
0.0		ществ.	
3.2	Химическое равновесие	Влияние концентрации и температуры на	
		смещение химического равновесия	
3.3	Общие закономерности	Тепловые эффекты химических реакций. За-	
	протекания химических	кон Гесса. Энтальпия. Термодинамический	
	реакций	критерий направленности химического про-	
		цесса.	
3.4	Растворы	Способы выражения концентрации растворов	
		(массовая доля, молярная доля, молярность,	
		моляльность). Приготовление растворов за-	
		данной концентрации. Ионные равновесия, рН	
		среды. Гидролиз солей. Окислительно-	
		восстановительные реакции. Растворимость,	
		факторы, влияющие на величину растворимо-	
		сти. Кислотно-основные свойства веществ. Ки-	
		слоты, основания и соли с точки зрения теории	
		электролитической диссоциации. Амфолиты.	
		Электролитической диссоциации. Амфолиты.	
1		і Олоктролитическая диссоциация воды. ИОППОС	
I		·	
		произведение воды. Концентрация водород-	
		произведение воды. Концентрация водородных ионов и водородный показатель. Обмен-	
		произведение воды. Концентрация водородных ионов и водородный показатель. Обменные реакции между ионами. Произведение	
		произведение воды. Концентрация водородных ионов и водородный показатель. Обменные реакции между ионами. Произведение растворимости. Реакции нейтрализации и гид-	
3.5	Окислительно - восста-	произведение воды. Концентрация водородных ионов и водородный показатель. Обменные реакции между ионами. Произведение	

	новительные реакции.	ления. Метод электронного баланса и метод	
		полуреакций.	
3.6	Характеристика эле-	Периодический закон как основа химической	
	ментов и их соединений	систематики <u>.</u> Металлы и неметаллы в перио-	
		дической системе. Физические и химические	
		свойства простых веществ. Общие принципы	
		получения простых веществ Общие свойства	
		неметаллов и металлов.	
		Характеристика элементов и их соединений,	
		Галогены. Халькогены. Кислород: оксиды и	
		гидроксиды. Сера: сульфиды, сульфаты. Азот.	
		Аммиак, соли аммония. Нитраты. Фосфор,	
		фосфаты. Углерод, карбонаты. Силикаты. Ор-	
		то- и метасиликаты. Простые металлы. Натрий	
		и калий, магний и кальций, их соединения.	
		Алюминий. Переходные металлы. Титан, хром,	
		вольфрам, марганец, железо и их соединения.	
		Медь. Серебро и золото.	

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименарание таки		Виды заі	нятий (количеств	о часов)	
п/ п	Наименование темы (раздела) дисциплины	Лекции	Практиче- ские	Лабораторные	Самостоятельная работа	Всего
1	Введение. Основные понятия и законы химии Современная химическая атомистика	2		-	2	4
2	Химическая кинетика	2		2	2	6
3	Химическая термоди- намика и химическое равновесие	2		2	2	6
4	Растворы	2		6	2	10
5	Окислительно- восстановительные реакции. Электролиз	2		4	2	8
6	Строение атома. Пе- риодический закон	2		-	2	4
7	Теория химической связи	2		-	2	4
8	Комплексные соедине- ния	2		4	2	8
9	Обзор химии элемен- тов I-VIIIАгрупп			16	6	22
	Итого	16		34	22	72

14. Методические указания для обучающихся по освоению дисциплины

Студенты знакомятся с теоретическим материалом в процессе лекционного курса, самостоятельно прорабатывают и усваивают теоретические знания с использованием рекомендуемой учебной литературы, учебно-методических пособий, согласно указанному списку (п.15).

На лабораторных занятиях студенты либо индивидуально, либо в составе малой группы выполняют учебно-исследовательскую работу. В ходе выполнения лабораторных работ студенты приобретают навыки обращения с химическими реактивами, лабораторным оборудованием и инструментарием, самостоятельно осуществляют эксперименты, регистрируют, анализируют и интерпретируют результаты экспериментов. Результаты учебно-исследовательской работы, включая необходимые расчеты, заключения и выводы, ответы на вопросы (задания) оформляются в рабочей тетради студента в виде таблицы. В конце лабораторного занятия результаты и материалы учебно-исследовательской работы докладываются преподавателю, при необходимости обсуждаются в группе (отчет о лабораторном занятии). В случаях пропуска лабораторного занятия по каким-либо

причинам студент обязан его самостоятельно выполнить под контролем преподавателя во время индивидуальных консультаций.

Текущая аттестация обеспечивает проверку освоения учебного материала, приобретения знаний, умений и навыков в процессе аудиторной и самостоятельной работы студентов, формирования общепрофессиональной компетенции. Текущие аттестации включают в себя регулярные отчеты студентов по лабораторным работам, выполнение тестовых и иных заданий к лекциям. При подготовке к текущей аттестации студенты изучают и конспектируют рекомендуемую преподавателем учебную литературу по темам лекционных и лабораторных занятий, самостоятельно осваивают понятийный аппарат, закрепляют теоретические знания. Планирование и организация текущих аттестации знаний, умений и навыков осуществляется в соответствии с содержанием рабочей программы и календарно- тематическим планом с применением фонда оценочных средств. Текущая аттестация является обязательной, ее результаты оцениваются в балльной системе и по решению кафедры могут быть учтены при промежуточной аттестации обучающихся. Формой промежуточной аттестации знаний, умений и навыков обучающихся является устный экзамен.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

′	н литература.			
№ п/п	Источник			
1	Гончаров Е.Г. Краткий курс теоретической неорганической химии / Е.Г. Гончаров, В.Ю. Кондрашин, А.М. Ховив, Ю.П. Афиногенов: учебное пособие. – СПб.: Издательство «Лань», 2017 464 с.			
2	Гончаров Е.Г. Теоретические основы неорганической химии / Е.Г. Гончаров, Ю.П. Афиногенов, В.Ю. Кондрашин, А.М. Ховив Воронеж : Издательский дом ВГУ, 2014 589 с.			
3	Афиногенов Ю. П. Химия биогенных элементов / Ю. П. Афиногенов, Е. Г. Гончаров, А. М. Ховив, И.А. Бусыгина Воронеж : ИПЦ ВГУ, 2010 438 с.			

б) дополнительная литература:

Nº ⊓/⊓	Источник
3	Коровин Н.В. Общая химия / Н.В. Коровин М. : Высш. шк., 2005 557 с.
4	Некрасов Б. В. Основы общей химии: в 2 т. / Б. В. Некрасов СПб: Лань, 2003.
5	Гринвуд Н. Химия элементов: В 2 т. Т.1/ Н. Гринвуд, А. Эрншо; - 3-е изд М.: Бином, Лаборатория знаний, 2015 607 с.
6	Гринвуд Н. Химия элементов: В 2 т. Т.2/ Н. Гринвуд, А. Эрншо; - 3-е изд М.: Бином, Лаборатория знаний, 2015 670 с.

в) базы данных, информационно-справочные и поисковые системы:

№ п/п	Источник
7	https://edu.vsu.ru/
8	www.lib.vsu.ru
9	www.plib.ru/library/
10	http://himlib.ru/index.php?book

16. Перечень учебно-методического обеспечения для самостоятельной работы (

Nº	Истонник
п/п	ЛИНРОГОЙ

1	Самофалова Т.В. Лабораторный практикум по общей химии / сост. Т.В. Самофалова, В.Н. Семенов, Г.В. Семенова - Воронеж :Издательский дом ВГУ, 2015
2	Афиногенов Ю.П. Лабораторный практикум по общей химии /сост. Ю.П.Афиногенов и др Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2013

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационносправочные системы (при необходимости)

В случае необходимости перехода на дистанционный режим обучения для создания электронных курсов, чтения лекций он-лайн и проведения лабораторнопрактических занятий используется информационные ресурсы Образовательного портала "Электронный университет ВГУ (https://edu.vsu.ru), базирующегося на системе дистанционного обучения Moodle, развернутой в университете

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения занятий лекционного типа:

Специализированная мебель; переносной проектор DLP BenQ MP523 и мобильный экран; ноутбук ASUS V6800V с возможностью подключения к сети «Интернет».

WinPro 8 RUS Upgrd OLP NL Acdmc, Office Standard 2019 Single OLV NL Each Aca-demic Edition Additional Product, браузер Google Chrome

Учебная аудитория для проведения занятий семинарского типа (лабораторные занятия), для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации:

Специализированная мебель; весы лабораторные ВМ-153; насос вакуумный; облучатель УФС-254; сушильный шкаф; шкаф вытяжной; водонагревательный кран; штативы лабораторные; лапки; держатели; кольца; горелки газовые; наборы химической посуда и реактивов.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование разде- ла дисциплины (моду- ля)	Компетен- ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Основные понятия и законы химии Современная химическая атомистика	ОПК-1 Способен для решения про- фессиональных задач использо- вать основные закономерности в области мате- матики, физики, химии, наук о Земле, биологии и экологии.	ОПК 1,2 Демонстрирует навыки лабо- раторной рабо- ты и методы химии, физики для решения профессио- нальных задач.	Комплекты КИМ для текущих и промежуточных аттестаций

№ п/п	Наименование разде- ла дисциплины (моду- ля)	Компетен- ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
	Химическая кинети- ка	ОПК-1	O∏K 1,2		
2	Химическая термо- динамика и химиче- ское равновесие	ОПК-1	ОПК 1,2	Комплекты КИМ для текущих и промежуточных аттестаций	
3	Растворы	ОПК-1	O∏K 1,2	Комплекты КИМ для текущих и промежуточных аттестаций	
4	Окислительно- восстановительные реакции. Электролиз	ОПК-1	ОПК 1,2	Комплекты КИМ для текущих и промежуточных аттестаций	
5	Строение атома. Периодический за- кон	ОПК-1	ОПК 1,2	Комплекты КИМ для текущих и промежуточных аттестаций	
6	Теория химической связи	ОПК-1	ОПК 1,2	Комплекты КИМ для текущих и промежуточных аттестаций	
7	Комплексные соединения	ОПК-1	ОПК 1,2	Комплекты КИМ для текущих и промежуточных аттестаций	
	Промежуто форма контроля	Перечень вопросов			

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

1. Текущая аттестация

Примерный перечень вопросов для текущей аттестации

- 1. Фундаментальные теории и законы химии: атомно-молекулярная теория; закон сохранения массы и энергии; Периодический закон; теория химического строения.
- 2. Современная химическая атомистика. Атом, молекула, кристалл. Простые и сложные химические соединения. Фаза как носитель свойств вещества, не обладающего молекулярной структурой. Аллотропия и полиморфизм.
- 3. Стехиометрические законы химии (закон постоянства состава и свойств, закон кратных отношений). Ограниченный характер и границы применимости стехиометрических законов.
- 4. Развитие представлений о строении атома. Планетарная модель Резерфорда. Теория Бора.
- 5. Основы квантово-механического описания строения атома. Корпускулярно-волновая природа электрона. Атомная орбиталь. Квантовые числа.
- 6. Основные правила заполнения орбиталей электронами (принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Хунда).
- 7. Периодический закон Д.И. Менделеева, его современная формулировка и физический смысл. Строение периодической системы элементов. 8. Химическая связь, ее основные характеристики (энергия, длина, направленность).
- 8. Представление о ионной связи.

Пример КИМ контрольной работы

- 1. Найдено, что раствор, содержащий 1026 г сахара в 1 л, имеет такое же осмотическое давление, что и раствор KNO₃, концентрация которого равна 1,8 моль/л. Вычислить кажущуюся степень электролитической диссоциации KNO₃.
- 2. Указать комплексообразователь, определить степень его окисления и координационное число и назвать комплексные соединения. [$Co(NH_3)_5Cl$] Cl_2 ; $K_3[Cr(OH)_6]$.Написать уравнение процесса диссоциации. Описать строение $K_3[Cr(OH)_6]$ с позиций MBC.
- 3. При каких условиях возможно самопроизвольное протекание реакции

$$2H_2S(g) + O_2(g) 2S(s) + 2H_2O(g) (\Delta H < 0)$$

Объяснить

Пример практических заданий

Практическое задание. Рассчитать объем 98%-ной серной кислоты (ρ =84,1г/мл) для приготовления: а) 200 мл 84,3% раствора (ρ = 77,1 г/мл); б) 400 мл 0,01н раствора (ρ ≈ 1г/мл).

Требования к выполнению заданий (или шкалы и критерии оценивания)

Оценка результатов обучения на текущей аттестации происходит по следующим показателям:

- 1. Владение содержанием учебного материала и понятийным аппаратом дисциплины «Химия».
- 2. Умение связывать теоретические знания с практическими навыками.
- 3. Умение устанавливать междисциплинарные связи.

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Перечень вопросов к зачету:

- 1. Фундаментальные теории и законы химии: атомно-молекулярная теория; закон сохранения массы и энергии; Периодический закон; теория химического строения.
- 2. Современная химическая атомистика. Атом, молекула, кристалл. Простые и сложные химические соединения. Фаза как носитель свойств вещества, не обладающего молекулярной структурой. Аллотропия и полиморфизм.
- 3. Стехиометрические законы химии. Ограниченный характер и границы применимости стехиометрических законов.
- 4. Развитие представлений о строении атома. Планетарная модель Резерфорда. Теория Бора.
- 5. Основы квантово-механического описания строения атома. Корпускулярноволновая природа электрона. Атомная орбиталь. Квантовые числа.
- 6. Основные правила заполнения орбиталей электронами (принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Хунда).
- 7. Периодический закон Д.И. Менделеева, его современная формулировка и физический смысл. Строение периодической системы элементов.
- 8. Химическая связь, ее основные характеристики (энергия, длина, направленность).
- 9. Представление о ионной связи.
- 10. Ковалентная связь: обменный и донорно-акцепторный механизмы образования; свойства связи. Представление о кратных связях.
- 11. Гибридизация атомных орбиталей. Типы гибридизации и геометрия молекул (на примере соединений с sp-, sp²-, sp³- гибридизацией орбиталей центрального атома).
- 12. Металлическая связь. Физические свойства простых и переходных металлов, обусловленные особенностями химической связи в них.
- 13. Водородная связь.
- 14. Межмолекулярное взаимодействие (силы Ван-дер-Ваальса).
- 15. Соединения первого и высшего порядка. Комплексные соединения и двойные соли. Номенклатура комплексных соединений.
- 16. Классификация комплексных соединений. Устойчивость комплексов. Константа нестойкости.
- 17. Термодинамические системы: открытые, закрытые, изолированные. Функции состояния. Внутренняя энергия, энтальпия. Первое начало термодинамики.
- 18. Тепловые эффекты химических реакций. Закон Гесса и следствия из него.
- 19. Энтропия. Свободная энергия Гиббса. Термодинамический критерий направленности химического процесса.
- 20. Обратимые и необратимые химические реакции. Состояние химического равновесия. Константа равновесия. Принцип Ле Шателье.

- 21. Химическая кинетика. Скорость химической реакции. Закон действующих масс.
- 22. Влияние температуры на скорость реакции. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации реакции.
- 23. Катализ. Принцип действия катализаторов и ингибиторов.
- 24. Виды дисперсных систем. Газообразные, жидкие, твердые растворы. Растворение как физико-химический процесс. Сольваты, гидраты.
- 25. Ненасыщенные, насыщенные, пересыщенные растворы. Способы выражения концентрации растворов.
- 26. Теория электролитической ионизации. Степень и константа ионизации. Сильные и слабые электролиты. Изотонический коэффициент Вант-Гоффа.
- 27. Электролитическая диссоциация кислот, оснований, солей. Амфотерные гидроксиды.
- 28. Ионизация воды. Ионное произведение воды. Водородный показатель (рН), гидроксильный показатель (рОН).
- 29. Гидролиз солей. Факторы, влияющие на степень гидролиза соли.
- 30. Произведение растворимости. Условия образования и растворения осадка.
- 31. Окислительно-восстановительные реакции. Степень окисления. Типичные окислители и восстановители. Метод электронного баланса. Метод полуреакций.
- 32. Металлы и неметаллы в периодической системе. Общие свойства металлов.
- 33. Общие свойства неметаллов.
- 34. Водород. Положение в периодической системе, физические и химические свойства. Методы получения водорода.
- 35. Щелочные металлы. Химические свойства и методы получения.
- 38. Алюминий: получение, химические свойства, важнейшие соединения.
- 39. Железо: получение, химические свойства, важнейшие соединения.
- 40. Физические и химические свойства углерода и кремния. Оксиды углерода и кремния. Угольная кислота и ее соли.
- 41. Азот и его соединения (аммиак, оксиды азота, азотная кислота).
- 42. Химические свойства кислорода и озона. Методы получения кислорода.
- 43. Пероксид водорода. Оксиды и пероксиды активных металлов.
- 44. Сера, оксиды серы. Серная, сернистая, сероводородная кислоты и их соли.
- 45. Общая характеристика галогенов. Особенности химии фтора.
- 46. Галогеноводородные кислоты и их соли. Кислородсодержащие кислоты хлора и их соли.

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформиро- ванности компетен- ций	Шкала оце- нок
Студент хорошо владеет теоретическим материалом: четко формулирует определения, законы, понимает их суть, правильно записывает все основные формулы, применяет их к решению практических задач, приводит примеры. Умеет находить связи между различными разделами, при ответе привлекает знания из других дисциплин. Правильно отвечает на все дополнительные вопросы. Ответ соответствует всем перечисленным компетенциям.	Повышен- ный Базовый Пороговый уровни	Зачтено
Студент не приобрел никаких новых знаний, либо эти знания фрагментарны. Компетенции не освоены.	_	Не зачтено